Бурная жизнь скоплений галактик

Рентгеновское изображение скопления галактик Кома в диапазоне 0.4 — 2 кэВ, полученное при помощи телескопа СРГ/eROSITA. Размер изображения составляет ~6 градусов, что соответствует 10 Mpc на расстоянии скопления, логарифмическая цветовая шкала охватывает 5 порядков величины. Основное скопление находится на стадии слияния с группой галактик NGC 4839 (яркое пятно справа внизу от скопления Кома) Рентгеновское изображение скопления галактик Кома в диапазоне 0.4 — 2 кэВ, полученное при помощи телескопа СРГ/eROSITA. Размер изображения составляет ~6 градусов, что соответствует 10 Mpc на расстоянии скопления, логарифмическая цветовая шкала охватывает 5 порядков величины. Основное скопление находится на стадии слияния с группой галактик NGC 4839 (яркое пятно справа внизу от скопления Кома) Рентгеновское изображение, в котором яркость центральной части искусственно подавлена, со схематичными обозначениями наиболее значимых структур, связанных с процессом слияния скопления с группой NGC 4839. Синей штриховой линией показана предполагаемая траектория группы, которая начала движение по направлению к центру скопления Кома с северо-запада и в настоящее время находится близко к апоцентру Рентгеновское изображение, в котором яркость центральной части искусственно подавлена, со схематичными обозначениями наиболее значимых структур, связанных с процессом слияния скопления с группой NGC 4839. Синей штриховой линией показана предполагаемая траектория группы, которая начала движение по направлению к центру скопления Кома с северо-запада и в настоящее время находится близко к апоцентру Изображение скопления Кома в микроволновых лучах, полученное спутником Planck Изображение скопления Кома в микроволновых лучах, полученное спутником Planck Карта температур электронов (взвешенная с плотностью газа), полученная из отношения изображения в микроволновом диапазоне, полученном спутником Planck (ESA) на основе эффекта Сюняева-Зельдовича, к изображению скопления Кома в рентгеновском диапазоне Карта температур электронов (взвешенная с плотностью газа), полученная из отношения изображения в микроволновом диапазоне, полученном спутником Planck (ESA) на основе эффекта Сюняева-Зельдовича, к изображению скопления Кома в рентгеновском диапазоне

Скопления галактик — это динамические системы, которые непрерывно растут за счет аккреции больших и маленьких порций материи. Такой процесс должен приводить к сложной структуре в распределении темной материи внутри скоплений, а также к ударным волнам и «холодным фронтам» в горячем газе. Очень подробные рентгеновские изображения скопления галактика Кома получили телескопы российской орбитальной обсерватории «Спектр-РГ», работающей вблизи точки L2 уже более года. Благодаря им удалось в деталях исследовать процесс слияния скоплений, невероятно бурный и длительный.

Скопление галактик в созвездии Волосы Вероники (также известное как Кома) — особенное. Оно очень массивное — содержит тысячи галактик, и близкое — находится на расстоянии менее 100 Мпк. Это первый объект, в котором было установлено присутствие «темной материи» (скрытой массы). Это сделал астрофизик Фриц Цвикки в 1933 году, а в 1950-х годах оно стало первым скоплением, в котором обнаружили диффузное радиогало.

В конце 1960-х годов возникла идея, что «темной материей» может быть горячий межгалактический газ. И действительно вскоре горячий газ в Коме был обнаружен первым рентгеновским спутником Uhuru. Более того, оказалось, что именно горячий газ составляет почти 80% всего нормального «барионного» вещества, в то время как звезды и галактики скопления Кома содержат не более 20% барионов скопления (барионы — семейство элементарных частиц, к которому относятся в том числе ядерные частицы протоны и нейтроны). Однако и горячего газа оказалось недостаточным для объяснения феномена «темной материи» — последней всё равно должно было быть гораздо больше. Полная масса барионов в горячем газе и в звездах скопления галактик не превышает 15% от полной массы скопления.

Рентгеновские наблюдения пока не решили полностью проблемы «темной материи», но существенно обогатили знания астрофизиков о том, что происходит в скоплениях галактик. Благодаря рентгеновской астрономии можно определять плотность, температуру и другие свойства горячего газа, заполняющего скопление, «видеть», как он распределен в пространстве. Наблюдения же за самим горячим газом стали важнейшим источником информации и о параметрах невидимого «темного» вещества. Именно оно определяет гравитационный потенциал скопления (если говорить проще, насколько сильно скопление «притягивает» к себе вещество) и то, как в нем распределен сам горячий газ. Близость Комы делает ее привлекательной для исследований во всех энергетических диапазонах, хотя огромные угловые размеры скопления зачастую усложняют задачу: телескопы с большим полем зрения обычно не могут «увидеть» всех деталей скопления, а более «чувствительные» телескопы не способны оглядеть его целиком.

Российская рентгеновская обсерватория «Спектр-РГ» с телескопами ART-XC им. М. Н. Павлинского и eROSITA на борту была специально разработана для решения таких задач. В режиме сканирования ей удалось построить полную карту всего скопления. На рентгеновском изображении, полученном eROSITA в результате двух сеансов растровых наблюдений, виден участок неба размером ~10 Мпк (на расстоянии скопления), что как минимум в два раза больше вириального радиуса скопления. Кроме множества источников, выделяются два ярких диффузных пятна, которые соответствуют основному скоплению и группе галактик NGC 4839 (справа внизу от центра). Скопление и группа находятся в процессе слияния. На самом деле, NGC 4839 уже однажды прошла через ядро основного скопления насквозь и вот-вот снова начнет «падать» обратно на центр.

Численное моделирование позволяет предсказать некоторые явления, связанные с этим конкретным этапом слияния, которые можно наблюдать. Головная ударная волна, созданная группой NGC 4839 во время ее первого прохода, теперь должна располагаться на окраине скопления, а газ, вытесненный из ядра основного скопления, должен падать обратно, образуя «вторичную» ударную волну. Новые данные позволяют предположить, что структура длиной в несколько мегапарсек, наблюдаемая справа от ядра, представляет собой именно «вторичную» ударную волну. На рисунке показано соответствие между численными гидродинамическими расчетами и наблюдениями телескопа eROSITA.

Еще одно интересное следствие сценария слияния состоит в том, что радиогало, ограниченное вторичной ударной волной, фактически прошло через две ударные волны — первый раз через головную ударную волну, вызванную первым пролетом NGC 4839 через ядро Комы со скоростью порядка 3500 километров в секунду, и совсем недавно — через вторичную ударную волну. Этот процесс, сопровождающийся ускорением частиц и сжатием газа, способен замедлить быстрое «старение» релятивистских частиц в радиогало, теряющих энергию из-за синхротронных потерь в магнитном поле на радиоизлучение и на обратное комптоновское рассеяние на фотонах реликтового излучения.

«Возможно, что и в других скоплениях, имеющих радиогало, работает подобный механизм, — говорит академик Евгений Чуразов, ведущий автор статьи. — А наша следующая задача — это исследовать самые внешние области скопления, где газ, падающий на Кому, тормозится на ударной волне и становится частью скопления».

Астрономам хорошо известно и замечательное изображение Комы в микроволновом диапазоне длин волн, полученное обсерваторией Planck. Из-за эффекта Сюняева-Зельдовича яркость реликтового излучения понижена в направлении на скопление с горячим газом. Изображение Комы в микроволновых лучах очень похоже на рентгеновское, полученное телескопом eROSITA. Однако рентгеновский поток скопления и амплитуда эффекта Сюняева-Зельдовича по-разному зависят от плотности и температуры газа. Это открывает возможность оценить температуру горячего газа по отношению яркостей в двух различных диапазонах длин волн.

Соотношение между изображениями, полученными телескопами eROSITA и Planck, дает представление о карте температуры газа. Такие измерения температуры не требуют какой-либо спектральной информации в рентгеновском диапазоне. Это достаточно неожиданный, на первый взгляд, метод. Он использует только поверхностную «отрицательную» яркость скопления в микроволновых лучах и поверхностную яркость рентгеновского излучения в диапазоне 0.4–2 кэВ, где телескоп eROSITA имеет высокую чувствительность, а фотоны имеют энергии значительно ниже измеряемой температуры. Чтобы получить карту распределения температуры, необходимо знать (или предположить) распределение плотности газа в скоплении. Как и ожидалось в рамках обсуждаемого сценария слияния, ядро основного скопления горячее (температура близка к 100 миллионам градусов), в то время как менее массивная группа NGC 4839 способна удерживать часть своего более чем в 3 раза холодного газа.

«Первая статья по длительным наблюдениям скопления галактик Кома уже направлена в журнал и опубликована в виде астро-препринта, — говорит научный руководитель обсерватории «Спектр-РГ» академик Рашид Сюняев. — Работа над данными этих наблюдений продолжается и обещает немало новых интересных результатов о физике скопления и поведении темного вещества в нем.

Скопление Кома — это самое глубокое поле, исследованное российским консорциумом обсерватории «Спектр-РГ» в ходе ее перелета с Земли в точку L2. Глубина этого поля позволяет детально исследовать не только интереснейшее скопление Кома, но и искать в рентгеновских лучах проявления других астрономических объектов, входящих в окружающее его сверхскопление галактик Кома. А это сверхскопление содержит более 3 000 галактик.

roscosmos.ru